
Choose Your Transformer: Improved Transferability Estimation of
Transformer Models on Classification Tasks

Lukas Garbas * Max Ploner *,†

* Humboldt-Universität zu Berlin
† Science Of Intelligence

<firstname>.<lastname>@hu-berlin.de

Alan Akbik *,†

Abstract

There currently exists a multitude of pre-trained
transformer language models (LMs) that are
readily available. From a practical perspective,
this raises the question of which pre-trained
LM will perform best if fine-tuned for a specific
downstream NLP task. However, exhaustively
fine-tuning all available LMs to determine the
best-fitting model is computationally infeasi-
ble. To address this problem, we present an
approach that inexpensively estimates a rank-
ing of the expected performance of a given set
of candidate LMs for a given task. Follow-
ing a layer-wise representation analysis, we ex-
tend existing approaches such as H-score and
LogME by aggregating representations across
all layers of the transformer model. We present
an extensive analysis of 20 transformer LMs, 6
downstream NLP tasks, and various estimators
(linear probing, kNN, H-score, and LogME).
Our evaluation finds that averaging the layer
representations significantly improves the Pear-
son correlation coefficient between the true
model ranks and the estimate, increasing from
0.58 to 0.86 for LogME and from 0.65 to 0.88
for H-score.

1 Introduction

Current state-of-the-art approaches for classifica-
tion tasks such as sequence labeling or text classi-
fication rely on pre-trained transformer language
models (LMs; Devlin et al., 2018; Clark et al., 2020;
He et al., 2021a). These models are fine-tuned on
task-specific training data. However, with the rising
availability of such pre-trained LMs (e.g. through
model hubs; Wolf et al., 2019), this raises the prac-
tical challenge of choosing which pre-trained trans-
former to use for a specific task.

However, exhaustively evaluating all available
transformer LMs is often infeasible due to the high
computational costs of fine-tuning. Further, since
fine-tuning is sensitive to hyperparameters such as
the learning rate, a hyperparameter search would

Figure 1: LMs are ranked based on the performance es-
timated using the encoded samples and the target labels
of the downstream task.

(a) Last layer (b) Layer mean (c) Best layer

Figure 2: Illustration of different ways to aggregate
information across multiple layers.

need to be executed for each candidate LM. Since
the concrete choice of the pre-trained model can
have a significant impact on the downstream per-
formance, we argue that there is a need for accurate
and computationally efficient transferability esti-
mation. Here, a given list of candidate LMs is
automatically ranked with regard to their expected
performance on a downstream task.

Utilizing frozen representations. One promis-
ing line of research performs this estimation by
extracting static representations from the LM for
all data points in the training and testing data. By
excluding the parameters of the transformer from
further fine-tuning (thus “freezing” the weights of
the transformer), the bulk of the computational
costs are avoided. Various estimators based on
frozen features have been proposed. For instance,
H-score (Bao et al., 2019) considers the inter-class
variance and feature redundancy, while the Loga-
rithm of Maximum Evidence (LogME; You et al.,

2021) assumes a linear transformation between rep-
resentations and layers. The latter was empirically
shown to be a strong baseline for task-specific rank-
ing of LMs (Bassignana et al., 2022).

Figure 1 illustrates how performance estimators
such as LogME or H-score are used: All task sam-
ples are encoded using the frozen LM. Using the
target labels, a score is estimated for each of the
models from which a ranking is produced.

Contributions. Building upon the insights from
previous studies on transferability estimation, this
work proposes methods to enhance the accuracy of
such estimators. Our improvements are derived
from prior findings in language model probing
(Rogers et al., 2020), where it was shown that dif-
ferent encoder layers encode different information
that can be very task-specific. They demonstrate
that, given the variety of NLP datasets and language
models available, relying solely on the features of
the last layer (see Figure 2a) is insufficient.

Following this observation, this paper evaluates
alternative strategies for extracting representations
from frozen transformers with regard to their use-
fulness in transferability estimation. In more detail:

1. We present an analysis of transferability es-
timation on 6 NLP tasks using 20 LMs that
vary in size and pre-training objective. For
each LM and downstream task, we perform
a hyperparameter search and full fine-tuning
to obtain a gold ranking to compare against.
We then evaluate 4 different estimators (linear
probing, kNN, LogME and H-score) and com-
pare their baseline performance to the gold
ranking using Pearson correlation.

2. We investigate alternative layerwise aggrega-
tion strategies, including averaging represen-
tations across all layers (see Figure 2b) and
separately identifying the best layer in each
LM (see Figure 2c).

3. We present further analysis on per-layer per-
formance of transformer LMs on downstream
tasks. Our analysis shows that in frozen mod-
els, intermediary layers are often better suited
for specific tasks.

Our experiments show that a simple strategy of
averaging representations significantly improves
transferability estimation for all considered estima-
tors. In particular, we find that the Pearson cor-
relation coefficient between the true model ranks

and the estimate increases from 0.58 to 0.86 for
LogME, and from 0.65 to 0.88 for H-score. We be-
lieve that our results indicate the viability of using
the H-score in combination with layerwise mean
representations for accurate and computationally
efficient transformer ranking.

2 Related work

Our work builds on previous research in the fields
of pre-trained model selection and automated ma-
chine learning. The following subsections give a
short introduction to each of these areas.

2.1 Pre-trained Model Transferability
Estimation

With the increased availability of various pre-
trained models, both the natural language process-
ing and the computer vision community began ex-
ploring approaches to estimate the performance of
different encoder models without fine-tuning them
on a downstream task.

H-score. Bao et al. (2019) proposed the H-score
which estimates the transferability of features f
learned on a source to a target task (with target sam-
ples X and labels Y) by considering the inter-class
variance and feature redundancy. This is captured
by the following equation:

H(f) = tr(cov(f(X))−1cov(EPX|Y [f(X)|Y]))

Low featured redundancy tr(cov(f(X))) and high
inter-class variance tr(cov(EPX|Y [f(X)|Y])) lead
to a high H-score of the source feature f .

H-score was improved by Ibrahim et al. (2023)
introducing adding regularization to the covariance
matrix cov(f(X)). This regularization stabilizes
the inversion of the matrix which is crucial when
using high-dimensional feature vectors and a small
number of samples as H-score had been reported
to struggle when being applied in the small data
domain (Nguyen et al., 2020). After applying the
regularization to H-score, it was shown to be a com-
petitive alternative to the state-of-the-art LogME.

LogME. You et al. (2021) use the representations
of frozen models F ∈ R|D|×h (i.e., embeddings
with dimensionality h) to assess the transferabil-
ity between the encoded inputs and their target
labels y ∈ R|D|. To this end, LogME approximates
the true probability density p(y |F) by assuming a
linear transformation w mapping the encoded rep-
resentation to the labels (F → y). A maximum

likelihood estimate could be computed by training
a linear probe with optimal parameters w∗ result-
ing in the likelihood p(y |F , w∗) which, in turn,
could then be used as an estimate for the suitabil-
ity of features. However, since the linear model
trained directly on the task data is likely to overfit,
You et al. (2021) propose to use the evidence (i.e.
marginalized likelihood over all values of w):

p(y |F) =

∫
p(y |F ,w)p(w)dw

By assuming w and y to be drawn from
parametrized, isotropic Gaussian distributions, this
can be solved using iterative evidence maximiza-
tion (You et al., 2021). The normalized logarithm
of the maximized evidence (LogME) is then used
to estimate the model’s performance on the down-
stream task after fine-tuning it. To extend this to
classification tasks, You et al. (2021) propose to
treat them as regression problems with one-hot en-
coded target vectors. The per-class evidence is then
averaged to retrieve a score representing the trans-
ferability to the multi-class classification problem.

LogME has been preliminarily explored within
the GLUE benchmark (Wang et al., 2018; You et al.,
2021). Subsequently, LogME was refined by ex-
tending the experiments to a broader spectrum of
language models (7 LMs) and NLP tasks (covering
8 datasets; Bassignana et al., 2022). As an enhance-
ment of the original work, the results show that text
classification tasks benefit from utilizing the mean
of all subword representations rather than relying
solely on the [CLS] token representation.

The previous work focused on the mapping be-
tween the features of the frozen model and their
corresponding ground truth labels, specifically by
not employing a trainable linear layer to reduce
overfitting. However, previous works rely solely
on the topmost layer features as representations of
the complete model.

Other transferability estimates. Following the
initial publication of the H-score, other works in
the area of computer vision proposed approaches to
estimate the joint distribution of pre-trained labels
and target labels (Nguyen et al., 2020; Tran et al.,
2019). Though fast to compute, these methods are
not suited for transferring pre-trained models to
classification tasks. Furthermore, these approaches
also do not operate on the feature level and, there-
fore, cannot profit from our proposed (feature level)
addition.

2.2 Layer-wise Representation Analysis

We use the term layer-wise representation analysis
to describe studies that examine pre-trained models
to see how their representations change through the
layers and how these changes connect to different
linguistic properties.

A significant part of this research was performed
using the BERT model under the term BERTology
(Rogers et al., 2020). It stands to reason that
BERT encodes local information about word to-
kens well on its lower layers, but switches to a
hierarchically-oriented encoding on higher layers
(Lin et al., 2019), leading to more context-specific
representations (Ethayarajh, 2019). Studies across
various tasks, datasets, and methodologies broadly
agree that syntactic information is predominantly
found in the middle layers of BERT (Hewitt and
Manning, 2019; Goldberg, 2019; Jawahar et al.,
2019; Liu et al., 2019a).

While BERT has been extensively examined,
there is little work on language models with differ-
ent pre-training tasks. Fayyaz et al. (2021) show
that given a different pre-training objective, the
maximum amount of linguistic knowledge can be
accumulated in different parts of the model. Specif-
ically, they show that, unlike BERT, XLNet (Yang
et al., 2019) encodes linguistic information in the
earlier layers during pre-training, while ELECTRA
tends to carry this information to the higher layers.

This indicates that solely depending on the same
layer for comparisons between different models
can lead to inaccuracies.

2.3 Automated Machine Learning

The field of automated machine learning (AutoML)
aims to reduce the manual work required to train
and deploy ML systems. Previous research has
often focused on network architecture search and
hyperparameter tuning (He et al., 2021b). However,
current state-of-the-art NLP pipelines typically in-
volve pre-trained language models (Saleem and
Kumarapathirage, 2023). Hence, selecting the pre-
trained model is an integral part of this process.

Recent research has started to acknowledge this
fact. Drori et al. (2019) propose to embed dataset
meta-data using an embedding network to find a
pipeline that performed well on a similar task. De-
sai et al. (2022) propose using synthetic data and a
meta-model to predict suitable tuning settings and
the best-performing model out of three candidate
models. Saleem and Kumarapathirage (2023) fol-

low a similar approach and test multiple models
(including random forest and K-Nearest Neighbors)
to predict the best performing model given a long
list of meta-features. Zhang et al. (2023b) pro-
pose AutoML-GPT, a method using a GPT model
to select models for fine-tuning based on datasets
and model cards (Mitchell et al., 2019) which de-
scribe the dataset structure and domain and model
architecture, training data and the intended use re-
spectively. Zhang et al. (2023a) propose a similar
approach they call “MLCopilot”: Using an LLM
to make suggestions for configuring an AutoML
system.

None of these approaches uses the model’s repre-
sentations of the samples in the current dataset but
instead rely on entirely meta-learned knowledge
from other examples. While there are many merits
to these types of approaches (such as having the
ability to propose fine-tuning configurations), they
all rely on extensively trained models and it is not
clear how much they will be able to generalize to
new domains and new types of models.

These approaches are largely orthogonal to the
representation-based approaches and hence may
complement the approaches discussed in the re-
mainder of the paper. Model transferability esti-
mation could either add additional information to
each of these approaches or profit from a narrowed-
down candidate list produced by either of these
approaches. Since the scope of these approaches
deviates significantly from ours, we do not include
them in our evaluation.

3 Performance Estimation

The goal of model selection is to estimate the per-
formance of various language models on a given
downstream task and rank them such that the order
closely aligns with the true order of their down-
stream performance. In an ideal scenario, for any
given classification dataset D, and a list of pre-
trained models {Tm |m = 1, . . . ,M}, there would
be a method capable of ranking these models with-
out the necessity of fine-tuning each model T on
D. This approach should offer not only a speed
advantage over the exhaustive fine-tuning of all
potential model candidates, but also maintain suffi-
cient accuracy to reliably identify the most suitable
models.

3.1 Estimators

The straightforward approach to estimating the per-
formance of a model is to train a linear layer on top
of a frozen LM and evaluate its performance. In
addition to a linear layer, we use kNN, H-score and
LogME.

Linear Probing. Training a linear head requires
hyperparameter search (i.e. optimizer type, learn-
ing rate, epochs, batch size) and the training can
take up to 50 epochs to reach convergence. We use
linear probing to confirm the results of previous
work and show that LogME and H-score perform
faster and are more accurate at ranking models.

K-Nearest Neighbours. kNN offers a speed ad-
vantage over linear probing due to the absence of
trainable parameters. It operates with only a single
hyperparameter, k. We test kNN as an alterna-
tive method to LogME. The benefit of kNN can
be seen in the implementation since it is a widely
supported algorithm by numerous libraries such as
scikit-learn (Pedregosa et al., 2012), and can easily
be used in any new model selection tool.

H-score. We use the improved version of H-score
(Ibrahim et al., 2023, see Section 2.1 for more de-
tails), as it was shown to be comparable to LogME.
For the sake of simplicity, we will refer to this as
“H-score” from here on. The authors provide a
fast implementation and show that their approach
outperforms the initially published version by Bao
et al. (2019).

LogME. LogME (see Section 2.1) is currently
the most accurate method that can be used for
model performance estimation. Since it only has
two trainable parameters α and β, it can be es-
timated just as fast as fitting a kNN model. We
report the scores for all our proposed approaches
using LogME and aim to improve its current per-
formance.

3.2 Layer-wise Feature Aggregation

We argue that the performance of just the topmost
layer is not sufficient to predict the LMs full po-
tential when it is fine-tuned. Given different pre-
training objectives, LMs can have diverse layer-
wise information that can strongly harm the pro-
duced ranking if only a specific layer is chosen in
each of the LM candidates. To incorporate deeper
layer features, we examine two ideas.

Last layer. During fine-tuning one typically at-
taches a new classification head to the last layer
of the transformer model. Hence, it appears to
be a natural choice to pick the representation pro-
duced by this last layer when estimating the per-
formance of a given downstream task (You et al.,
2021; Bassignana et al., 2022).

Layer mean. As a simple approach, we use the
mean of all hidden representations. As summa-
rized in earlier works (Rogers et al., 2020), differ-
ent layers of a language model encode different
aspects of linguistic information, with lower lay-
ers capturing basic syntactic patterns and higher
layers encoding more complex semantic relation-
ships. By averaging representations of all layers,
we integrate a broad spectrum of linguistic features,
potentially leading to a more robust and generaliz-
able representation. In addition, different language
models may have variations in how linguistic in-
formation is distributed across their layers (Fayyaz
et al., 2021). Averaging the representation across
all layers when comparing frozen models can nor-
malize these differences and ensure consistency
across model architectures.

Avg. of scores. As an alternative to averaging all
layers into a single representation, we first estimate
the performance of each layer individually and
then compute the average of all estimated scores.
Though this approach has the significant downside
that it requires multiple computations of the estima-
tion score, it could yield further insides into how
the information across the layer should ideally be
aggregated.

Best layer. To eliminate the possibility of unhelp-
ful layers adding noise to the representation, we
include a variant that searches for the layer that is
estimated to have the highest performance in the
model. We run a separate estimation for each layer
and use the highest of the resulting scores. This
should select the layer that produces the most rele-
vant features for the task. By evaluating the best-
performing layer, each model is assessed based on
its potentially optimal contribution.

4 Experimental Setup

We fine-tune each model on specific downstream
tasks to assess their performance. For each dataset,
we arrange the models in ascending order by their
fine-tuned scores to accurately determine their rank-
ings. Then, we compare the scores of each estima-

Dataset Task Domain Size |Y|

T
C

Airline Sentiment Twitter 11.5K 2
CoLA Linguistic Accept. General 10.5K 2
SST-2 Sentiment General 67K 2

N
E

R

CoNLL NER General 22K 4
SciNER NER Science 650 7
CrossNER NER Science 2K 17

Table 1: Six datasets were used in this study: Three
text classification tasks (TC) and three named entity
recognition tasks (NER). The performance on CoLA
is typically measured using the Matthews Correlation
Coefficient (MCC). The other tasks are measured using
a micro-averaged F1-score. |Y| refers to the number of
classes or labels.

tor by comparing them to the true ranking. In the
following, we describe the selection of language
models and datasets.

Language Models. We select 20 pre-trained
language models from the Transformers Wolf
et al. (2019) library’s model hub, expanding
upon the most recent work by Bassignana et al.
(2022), which utilized 7 different models. The
selection was broadened to include models that
were pre-trained with other tasks than masked
language modeling (MLM), such as DeBERTa
(He et al., 2021a), SpanBERT (Joshi et al.,
2019), and two sentence-transformer models:
All-MPNet-base and All-MiniLM (Reimers and
Gurevych, 2019). The complete list of models used
in the experiments, along with their number of pa-
rameters and pre-training tasks, can be found in
Table 5 in the appendix.

Datasets. We select six classification datasets for
the experiments (see Table 1 for an overview).
We use three datasets already used in the previous
work (Bassignana et al., 2022): Airline Sentiment,
SciNER (Luan et al., 2018), and CrossNER (Liu
et al., 2020). Additionally, we incorporate three
datasets commonly used for evaluating language
models: CoLA (Warstadt and Bowman, 2019),
SST-2 (Socher et al., 2013), CoNLL-03 (Sang and
Meulder, 2003).

Fine-tuning. The state-of-the-art approach to
achieve the best performance on most of the NLP
datasets is full language model fine-tuning. We use
the scores of fine-tuned models as the reference
ranking. To fine-tune each model we use the Flair
framework (Akbik et al., 2019).

Dataset Size Full FT Probing H-score
layer mean

H-score
best layer

Airline 11.5K 498s 260s 28s 40s
CoLA 10.5K 264s 96s 9s 16s
SST-2 67K 1,515s 747s 75s 103s
CoNLLL 22K 2,419s 233s 60s 130s
SciNER 2K 341s 44s 10s 28s
CrossNER 650 62s 31s 6s 19s

Table 2: Runtimes for a subset of the estimation tech-
niques on each dataset using a single model (bert-base).
We report the full duration for each of the fine-tuning
runs. The number of required epochs to get the best
fine-tuning perform differs between the datasets (see the
Section A in the appendix). Since the runtimes of H-
score and LogME are very similar, we only report it for
H-score here. Similarly, the runtime for layer mean and
last layer as well as best layer and avg. of scores across
layers are approximately equal. In the experiments, we
use a GeForce RTX 3090 GPU, 24268MiB.

Evaluation. We assess the effectiveness of each
layer-wise aggregator (i.e. layer mean and best
layer) given different estimators (i.e. kNN, H-score,
and LogME). We evaluate each setup for ranking
language models (LMs) based on their fine-tuned
performances using Pearson ρ correlation coeffi-
cient as the primary metric. We report the corre-
lation coefficients, comparing the transferability
estimates of the 20 models with their fine-tuning
scores. Additionally, scores using Spearman’s rank
correlation and Weighted Kendall’s τ are provided
in the appendix.

5 Results and Discussion

We report the Pearson ρ correlations between the
true fine-tuned and the estimated performances in
each of the setups in Table 3. We distinguish be-
tween different estimation strategies: Linear prob-
ing, kNN, H-score, and LogME. Furthermore, we
report the expected correlation for each estimator,
derived from different layer-wise aggregators, by
averaging the outcomes across all six datasets.

Low performance when using the last layer.
Due to increasing the number of models to 20,
we report a decreased correlation when only
the last layer is used (compared to Bassignana
et al., 2022). When performing the best layer
search and estimating each layer in language mod-
els, we notice that models such as ELECTRA and
sentence-transformers underperform on NER
tasks using the last layer compared to their deeper
layers . This leads to an incorrect order of their final

rankings (for detailed plots and best layer indices,
see Figure 4 and Table 6 in the appendix).

Layer-aggregation improves all tested estima-
tion methods. By selecting the best-performing
layer within the encoder, we achieve an improve-
ment in kNN’s performance by 0.54, elevating its
ρ value from 0.14 to 0.68. Similarly, LogME’s
performance is enhanced by 0.26, increasing its ρ
from 0.58 to 0.84 and H-score by 0.23 (from 0.65
to 0.88).

The performance difference between the layer
mean and the best layer is negligible. Specifi-
cally, when using LogME, the difference is merely
0.0086, with the layer mean surpassing the best
layer in two of the six datasets (namely SciNER and
CoLA). Thus, the layer mean approach is a viable
alternative to selecting the best layer, offering com-
parable performance across datasets, with certain
datasets showing benefits while for other datasets
the performance difference remains insignificant.

Aggregating layer-wise representations using the
layer mean also shows superiority against averag-
ing between the scores of each layer with a differ-
ence of 0.88 vs. 0.82 for H-score, 0.86 vs. 0.80
using LogME, and 0.63 vs. 0.63 for kNN.

Since estimation with the layer mean represen-
tation is more time-efficient than identifying the
optimal layer for each encoder or averaging layer-
specific scores, as it requires a single estimation,
the layer-mean representation appears to be the
most promising.

H-score and LogME outperform the baselines.
The results demonstrate the utility of the tested
estimation techniques. H-score and LogME out-
perform the simpler linear probing and kNN ap-
proaches. The absolute difference between kNN
and H-score, when utilizing their respective most
effective aggregators, is 0.20 (0.18 for LogME),
with Pearson correlation coefficients (ρ) of 0.68
for kNN versus 0.88 for H-score (and 0.86 for
LogME).

The difference compared to linear probing is not
as drastic, but still significant. H-score outperforms
linear probing by 0.04. Furthermore, linear probing
requires a careful selection of the training hyper-
parameters and is significantly slower as it usually
requires multiple epochs of training.

H-score vs. LogME. While an in-depth com-
parison of the various estimation strategies is cer-
tainly outside the scope of this paper, we find that

Approach Airline CoLA SST-2 CoNLL SciNER CrossNER Avg

Linear Probinglast layer 0.6695 0.7924 0.7447 0.8292 0.3230 0.2393 0.5997

Linear Probinglayer mean 0.8806 0.8910 0.9100 0.9408 0.6976 0.6998 0.8366

kNNlast layer 0.1286 0.7224 -0.3888 0.3812 -0.1428 0.1265 0.1379

kNNlayer mean 0.7256 0.7549 0.3983 0.9015 0.5516 0.6596 0.6653

kNNbest layer 0.8739 0.7379 0.4235 0.8920 0.5087 0.6474 0.6806

kNNavg. of scores 0.6938 0.8310 0.1449 0.9057 0.4839 0.7215 0.6301

H-scorelast layer 0.7801 0.8525 0.5889 0.7838 0.3786 0.5045 0.6481

H-scorelayer mean 0.8857 0.9304 0.9118 0.9298 0.7444 0.8761 0.8797
H-scorebest layer 0.8860 0.9272 0.8814 0.9385 0.7039 0.8839 0.8701

H-scoreavg. of scores 0.8326 0.8693 0.8277 0.9114 0.6353 0.8350 0.8185

LogMElast layer 0.7043 0.7804 0.5846 0.6601 0.3217 0.4331 0.5807

LogMElayer mean 0.8866 0.9052 0.9148 0.9247 0.7036 0.8466 0.8636

LogMEbest layer 0.8924 0.8759 0.8897 0.9234 0.6365 0.8587 0.8461

LogMEavg. of scores 0.8091 0.8916 0.8295 0.9046 0.5518 0.7946 0.7969

Table 3: Pearson’s ρ correlation coefficient between transferability scores and fine-tuning performances. Comparison
of using different layer information together with the different estimation techniques on 3 text classification and
3 NER datasets. We report the Pearson correlation rank between the order of fine-tuned models, and the ranking
estimated by using representations of frozen models. We mark the variant with the highest correlation overall in
bold and underline the best layer-wise aggregation (for each estimator).

both H-score and LogME are very competitive
with H-score showing marginally better correla-
tion scores. Both approaches profit from the use
of layer-wise representation aggregation and both
methods work quite well in combination with the
layer mean which we propose using.

Runtime. As shown in Table 2, estimating the
performance is roughly one order of magnitude
faster than computing the true performance of a
model. Since the runtime of fine-tuning depends
on the number of epochs, the speedup can vary
drastically.

To estimate the performance, the majority of
the time is spent embedding the datapoints. The
actual estimation techniques only take a fraction
of the time. Thus, the differences are between the
different estimation techniques are minor.

Since more than 98% of the estimation’s runtime
is spent on embedding the datapoints, reducing the
number of datapoints would linearly reduce the es-
timation time as well. Further research may clarify
the number of task samples required to confidently
estimate the performance after fine-tuning. This
could offer further runtime reductions. The number
of samples may depend on the estimation technique

used. Additionally, one may want to compare the
estimates to fine-tuning models on a subset of the
data. Though the training time may be significantly
reduced, we expect that using small subsets of the
training data will not provide similarly robust per-
formance estimates.

5.1 Analysis of Layer-wise Transferability

While it is commonly reported (Rogers et al., 2020;
Lin et al., 2019) that the last layer of a pre-trained
transformer may not yield the best performance (as
it is very much tuned to the pre-training objective
and hence may lack the generality that we would
like from a representation), it is not clear which
layer specifically contains the most relevant repre-
sentation for a given model (Fayyaz et al., 2021).

Transferability estimation offers a computation-
ally relatively cheap option to compare the layer-
wise representations with an important benefit: It
does not rely on a non-deterministic optimization
process which relies on finding a good set of hyper-
parameters.

Figure 4 in the appendix compares the estimation
approaches with linear probing each layer’s repre-
sentation. In the case of the estimation techniques,

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Layer (from bottom to top)

0.40

0.45

0.50

0.55

0.60

0.65

0.70
HS

co
re

SST-2

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Layer (from bottom to top)

1.8

2.0

2.2

2.4

2.6

HS
co

re

CoNLL-03

layer-wise estimate
layer-mean

bert-base-uncased
microsoft/deberta-v3-base
microsoft/mpnet-base

sentence-transformers/all-mpnet-base-v2
xlm-roberta-base
google/electra-base-discriminator

Figure 3: H-score for each of the layers in a model (on the sentence-level task SST-2 compared to the span-level
task CoNLL-03): The peaks vary between the tasks but also differ from model to model. Note that the highest layer
mean in SST-2 is not drawn in bold, but represents two models (deberata-v3-base and all-mpnet-base-v2)
which are very close.

we plot the resulting score. For linear probing, the
plot shows the test accuracy after linear probing.

The transferability significantly varies between
the different layers and the peaks of expected per-
formance vary between the models and tasks (here
shown for SST-2 and CoNLL-03 in Figure 3). We
hypothesize that during fine-tuning relevant fea-
tures in a model can still be utilized efficiently
since they are passed to the top through the resid-
ual connections within the transformer blocks (and
are only scaled down on the way). The impact of
layers that do not positively contribute to the down-
stream tasks can easily be scaled down. When
using a frozen representation this is not the case.

Since the last layer rarely contains the most rele-
vant representation, aggregating information from
all layers is important for estimating the true per-
formance once the model is fine-tuned. As shown
in this work, taking the maximum of all layers’
estimated score (which amounts to selecting the
value of the highest peak) and using the score of
the mean representation (indicated with a dashed
line in Figure 3) both are sensible choices and sig-
nificantly improve the estimation of the fine-tuned
performance.

6 Conclusion

We propose the aggregation of layer-wise repre-
sentations to enhance the performance of an exist-
ing encoder transferability estimation techniques

H-score and LogME. We demonstrate that any rep-
resentation aggregation method (across all layers of
the transformer model) can improve the ranking of
pre-trained language models. The straightforward
approach to average the representations across all
layers (layer mean) improves the correlation coeffi-
cient between the true model ranks and the estimate
by 0.13 for H-score and 0.28 for LogME.

Searching for the layer with the best estimate is
shown to perform slightly worse on average across
all tasks. Furthermore, it comes with the additional
cost induced by the need to compute the score for
each layer individually. We therefore recommend
using the layer mean variant of H-score or LogME.

Limitations

While a system designed to automatically select a
suitable pre-trained model from a model hub would
need to consider all included models (or at least
a large subset), H-score and LogME still require
a constraint candidate list. They operate on the
representations produced by the frozen models and
hence require encoding task samples using each
of the models. If this cannot be done in the hub
directly, a copy of the weights for each of the mod-
els still needs to be retrieved. Depending on the
number of models, this could induce a lot of traffic.

Hence, H-score and LogME cannot be extended
to complete model hubs. Instead, as suggested in
the paper, they would need to be complemented

with a component that can produce candidates
based on the models’ metadata to automatically
select models. However, it still can play a crucial
role in reducing the number of candidates before
fine-tuning any of the models.

Furthermore, transferability estimates are con-
strained to supervised tasks. E.g. H-score and
LogME cannot be used to select suitable LLMs for
text generation.

Ethics Statement

Anticipating ethical concerns for this research is
challenging because of the wide-ranging utility of
language model selection. As fine-tuning the entire
space of available language models is unsustain-
able and unethical in terms of climate sustainabil-
ity, efficient encoder pre-selection methods such
as H-score and LogME provide a positive step to-
ward tackling this problem. Our work enhances the
process of efficient model selection by increasing
its accuracy, thereby encouraging practitioners to
avoid unnecessary fine-tuning.

Acknowledgements

We thank all reviewers for their valuable comments.
Max Ploner and Alan Akbik are supported by
the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Ex-
cellence Strategy – EXC 2002/1 “Science of Intel-
ligence” – project number 390523135. Alan Akbik
is further supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation)
under the Emmy Noether grant “Eidetic Repre-
sentations of Natural Language” (project number
448414230).

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang,
Lizhong Zheng, Amir Zamir, and Leonidas Guibas.
2019. An Information-Theoretic Approach to Trans-
ferability in Task Transfer Learning. In 2019
IEEE International Conference on Image Process-
ing (ICIP).

Francesco Barbieri, José Camacho-Collados, Leonardo
Neves, and Luis Espinosa Anke. 2020. Tweeteval:

Unified benchmark and comparative evaluation for
tweet classification. CoRR, abs/2010.12421.

Elisa Bassignana, Max Müller-Eberstein, Mike Zhang,
and Barbara Plank. 2022. Evidence > intuition:
Transferability estimation for encoder selection.

Iz Beltagy, Arman Cohan, and Kyle Lo. 2019. Scibert:
Pretrained contextualized embeddings for scientific
text. CoRR, abs/1903.10676.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. CoRR, abs/2003.10555.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Rushil Desai, Aditya Shah, Shourya Kothari, Aishwarya
Surve, and Narendra Shekokar. 2022. TextBrew: Au-
tomated Model Selection and Hyperparameter Opti-
mization for Text Classification. International Jour-
nal of Advanced Computer Science and Applications,
13(9).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Iddo Drori, Lu Liu, Yi Nian, Sharath C. Koorathota,
Jie S. Li, Antonio Khalil Moretti, Juliana Freire, and
Madeleine Udell. 2019. AutoML using Metadata
Language Embeddings.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? comparing the geom-
etry of bert, elmo, and GPT-2 embeddings. CoRR,
abs/1909.00512.

Mohsen Fayyaz, Ehsan Aghazadeh, Ali Modarressi, Ho-
sein Mohebbi, and Mohammad Taher Pilehvar. 2021.
Not all models localize linguistic knowledge in the
same place: A layer-wise probing on bertoids’ repre-
sentations. CoRR, abs/2109.05958.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. CoRR, abs/1901.05287.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021a.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. CoRR, abs/2111.09543.

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021b. Au-
toML: A Survey of the State-of-the-Art. Knowledge-
Based Systems, 212:106622.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of

https://doi.org/10.48550/arXiv.2212.10082
https://doi.org/10.48550/arXiv.2212.10082
http://arxiv.org/abs/2010.12421
http://arxiv.org/abs/2010.12421
http://arxiv.org/abs/2010.12421
http://arxiv.org/abs/2210.11255
http://arxiv.org/abs/2210.11255
http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.14569/IJACSA.2022.0130988
https://doi.org/10.14569/IJACSA.2022.0130988
https://doi.org/10.14569/IJACSA.2022.0130988
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1910.03698
https://doi.org/10.48550/arXiv.1910.03698
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/2109.05958
http://arxiv.org/abs/2109.05958
http://arxiv.org/abs/2109.05958
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2019. Clinicalbert: Modeling clinical notes and pre-
dicting hospital readmission. CoRR, abs/1904.05342.

Shibal Ibrahim, Natalia Ponomareva, and Rahul
Mazumder. 2023. Newer is Not Always Better: Re-
thinking Transferability Metrics, Their Peculiarities,
Stability and Performance. In Machine Learning and
Knowledge Discovery in Databases, pages 693–709.
Springer International Publishing.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2019. Spanbert:
Improving pre-training by representing and predict-
ing spans. CoRR, abs/1907.10529.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
CoRR, abs/1901.08746.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside bert’s linguistic knowl-
edge. CoRR, abs/1906.01698.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. CoRR, abs/1903.08855.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Zihan Liu, Yan Xu, Tiezheng Yu, Wenliang Dai, Ziwei
Ji, Samuel Cahyawijaya, Andrea Madotto, and Pas-
cale Fung. 2020. Crossner: Evaluating cross-domain
named entity recognition. CoRR, abs/2012.04373.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. CoRR, abs/1808.09602.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model Cards for Model Reporting. In
Proceedings of the Conference on Fairness, Account-
ability, and Transparency, pages 220–229.

Cuong V. Nguyen, Tal Hassner, Cédric Archambeau,
and Matthias W. Seeger. 2020. LEEP: A new mea-
sure to evaluate transferability of learned representa-
tions. CoRR, abs/2002.12462.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake VanderPlas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Edouard Duchesnay. 2012. Scikit-learn: Ma-
chine learning in python. CoRR, abs/1201.0490.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
CoRR, abs/1908.10084.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how BERT works. CoRR, abs/2002.12327.

Shehan Saleem and Sapna Kumarapathirage. 2023. Au-
toNLP: A Framework for Automated Model Selec-
tion in Natural Language Processing. In 2023 18th
Iberian Conference on Information Systems and Tech-
nologies (CISTI), pages 1–4.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: Language-
independent named entity recognition. CoRR,
cs.CL/0306050.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding.

Anh Tuan Tran, Cuong V. Nguyen, and Tal Hassner.
2019. Transferability and hardness of supervised
classification tasks. CoRR, abs/1908.08142.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

http://arxiv.org/abs/1904.05342
http://arxiv.org/abs/1904.05342
https://doi.org/10.1007/978-3-031-26387-3_42
https://doi.org/10.1007/978-3-031-26387-3_42
https://doi.org/10.1007/978-3-031-26387-3_42
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/1901.08746
http://arxiv.org/abs/1901.08746
http://arxiv.org/abs/1906.01698
http://arxiv.org/abs/1906.01698
http://arxiv.org/abs/1903.08855
http://arxiv.org/abs/1903.08855
http://arxiv.org/abs/1903.08855
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2012.04373
http://arxiv.org/abs/2012.04373
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/1808.09602
http://arxiv.org/abs/1808.09602
http://arxiv.org/abs/1808.09602
https://doi.org/10.1145/3287560.3287596
http://arxiv.org/abs/2002.12462
http://arxiv.org/abs/2002.12462
http://arxiv.org/abs/2002.12462
http://arxiv.org/abs/1201.0490
http://arxiv.org/abs/1201.0490
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/2002.12327
https://doi.org/10.23919/CISTI58278.2023.10212030
https://doi.org/10.23919/CISTI58278.2023.10212030
https://doi.org/10.23919/CISTI58278.2023.10212030
http://arxiv.org/abs/cs/0306050
http://arxiv.org/abs/cs/0306050
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/1908.08142
http://arxiv.org/abs/1908.08142
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461

Alex Warstadt and Samuel R. Bowman. 2019. Gram-
matical analysis of pretrained sentence encoders with
acceptability judgments. CoRR, abs/1901.03438.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. CoRR, abs/1906.08237.

Kaichao You, Yong Liu, Mingsheng Long, and Jian-
min Wang. 2021. Logme: Practical assessment
of pre-trained models for transfer learning. CoRR,
abs/2102.11005.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and
Yuqing Yang. 2023a. MLCopilot: Unleashing the
Power of Large Language Models in Solving Ma-
chine Learning Tasks.

Shujian Zhang, Chengyue Gong, Lemeng Wu,
Xingchao Liu, and Mingyuan Zhou. 2023b. AutoML-
GPT: Automatic Machine Learning with GPT.

A Hyperparameters for Fine-Tuning and
Linear Probing

Fine-Tuning. To fine-tune each model we use
the flair framework (Akbik et al., 2019) and an
AdamW optimizer (Loshchilov and Hutter, 2019)
with a linear learning rate scheduler. For each of
the dataset we optimized the hyperparameters start-
ing with previously reported settings and tried to
match the performance where it has been reported.
Generally we searched the learning rate in the range
{2e-4, 5e-5, 7e-5, 2e-6, 5e-6} and the batch size in
{4, 8, 16, 32}. Table 4 reports the hyperparameters
we eventually settled on for each dataset.

In each training run, we select the model check-
point that performs best on the development set
(i.e. early stopping) and evaluate it on the test set.
The scores for the SST-2 and CoLA datasets are
reported on the development set, as there are no
publicly available test sets. Detailed tables in this
appendix (7-12) report the average score out of
three runs and a standard error.

Performing a hyperparameter search for each
model individually could further improve this setup.
However, this was infeasible within our computa-
tional budget given the large number of models.
Where individual hyperparameter searches were
performed, we observed that the ideal set of param-
eters depends much more on the dataset than the

Dataset Batch Size LR Max. epochs

Airlines 16 5e-5 10
SST-2 32 2e-5 10
CoLA 16 2e-5 10
CoNLL-03 4 5e-6 15
CrossNER 4 5e-5 30
SciNER 4 5e-5 20

Table 4: Hyperparameters used to fine-tune models on
each of the datasets.

model (given that the models we selected all have a
relatively equal size). Hence, we are confident that
the fine-tuned scores and, consequently, the models’
ranking are fairly close to what a more extensive
model-specific hyperparameter search would yield.

Linear Probing. For linear probing, we use the
AdamW optimizer with a batch size of 16 and train
for 20 epochs using a constant learning rate of 1e-3.

B Tested Language models

Table 5 contains a list of the tested models with
some information on their architecture and pre-
training setup. We extended the list of candidate
models used by Bassignana et al. (2022), which in-
cluded 7 different models. We opted to additionally
include models that were pre-trained using other ob-
jectives than just Masked Language Modeling such
as DeBERTa (He et al., 2021a), SpanBERT (Joshi
et al., 2019), and two sentence-transformer mod-
els: All-MPNet-base and All-MiniLM (Reimers
and Gurevych, 2019).

C Additional Results

Table 6 reports the layer with the highest estimate
(LogME) for each of the models on each of the
datasets. This corresponds to the position of the
peak for each line in Figure 5. In Tables 7-12, we
report the fine-tuned performances for each of the
models as well as the LogME scores for each of
the layer-wise variants. Note that the scores for
the SST-2 and CoLA datasets are reported on the
development set, as there are no publicly available
test sets. SectionA gives a detailed description of
the fine-tuning setup used to train the models.

http://arxiv.org/abs/1901.03438
http://arxiv.org/abs/1901.03438
http://arxiv.org/abs/1901.03438
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/2102.11005
http://arxiv.org/abs/2102.11005
https://doi.org/10.48550/arXiv.2304.14979
https://doi.org/10.48550/arXiv.2304.14979
https://doi.org/10.48550/arXiv.2304.14979
http://arxiv.org/abs/2305.02499
http://arxiv.org/abs/2305.02499

Language Model Publication Pretraining Objective # Parameters # Layers

allenai/scibert_scivocab_cased Beltagy et al. (2019) MLM, NSP 110M 12
bert-base-uncased Devlin et al. (2018) MLM, NSP 110M 12
bert-large-uncased Devlin et al. (2018) MLM, NSP 340M 24
cardiffnlp/twitter-roberta-base Barbieri et al. (2020) MLM 110M 12
distilbert-base-uncased Sanh et al. (2019) Distillation, MLM 110M 6
dmis-lab/biobert-base-cased-v1.2 Lee et al. (2019) MLM 110M 12
emilyalsentzer/Bio_ClinicalBERT Huang et al. (2019) MLM 110M 12
google/electra-base-discriminator Clark et al. (2020) RTD 110M 12
google/electra-large-discriminator Clark et al. (2020) RTD 340M 24
google/electra-small-discriminator Clark et al. (2020) RTD 14M 12
microsoft/deberta-v3-base He et al. (2021a) RTD 110M 12
microsoft/mdeberta-v3-base He et al. (2021a) RTD 110M 12
microsoft/mpnet-base Song et al. (2020) MLM+PLM 110M 12
roberta-base Liu et al. (2019b) MLM 110M 12
sentence-transformers/all-MiniLM-L12-v2 Reimers and Gurevych (2019) MLM+PLM, CF 14M 12
sentence-transformers/all-mpnet-base-v2 Reimers and Gurevych (2019) MLM+PLM, CF 110M 12
SpanBERT/spanbert-base-cased Joshi et al. (2019) SBO 110M 12
typeform/distilroberta-base-v2 Sanh et al. (2019) Distillation, MLM 110M 6
xlm-roberta-base Conneau et al. (2019) MLM 110M 12
xlm-roberta-large Conneau et al. (2019) MLM 550M 24

Table 5: Overview of Language Models used in experiments. Pretraining tasks include MLM: Masked Language
Modeling, NSP: Next Sentence Prediction, RTD: Replaced Token Detection, PLM: Permuted Language Modeling,
SBO: Sentence Boundary Objective, CF: Contrastive Fine-tuning

12 10 8 6 4 2
Layer (from bottom to top)

1.8

2.0

2.2

2.4

2.6
H-Score

12 10 8 6 4 2
Layer (from bottom to top)

0.4

0.5

0.6

0.7

LogME

12 10 8 6 4 2
Layer (from bottom to top)

0.6

0.7

0.8

Linear Probing

bert-base-uncased
microsoft/deberta-v3-base

microsoft/mpnet-base
sentence-transformers/all-mpnet-base-v2

xlm-roberta-base
google/electra-base-discriminator

Figure 4: H-score, LogME, and F1 test scores of linear probing each layers representation on CoNLL. Since
linear probing is also a means of estimating the relevance of each layer (as opposed to measuring it), we resort to
comparing the different estimation techniques.

0.95

1.00

1.05

1.10

1.15
H-Score

0.300

0.275

0.250

0.225

0.200

0.175

LogME Score

0.1

0.2

0.3

0.4

0.5

0.6

0.5

0.4

0.4

0.5

0.6

0.7

0.5

0.4

0.3

0.2

1.8

2.0

2.2

2.4

2.6

0.4

0.5

0.6

0.7

1.6

1.8

2.0

0.26

0.28

0.30

0.32

0.34

0.36

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Layer (from bottom to top)

5.0

5.5

6.0

6.5

7.0

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Layer (from bottom to top)

0.85

0.90

0.95

Ai
rli

ne
Co

LA
SS

T-
2

Co
NL

L-
03

Sc
iN

ER
Cr

os
sN

ER
Layer-wise score
Layer-mean score

bert-base-uncased
microsoft/deberta-v3-base
microsoft/mpnet-base

sentence-transformers/all-mpnet-base-v2
xlm-roberta-base
google/electra-base-discriminator

Figure 5: This plot illustrates the regularized H-score and LogME scores across each transformer layer, with a
dashed line representing the layer mean performance.

Model Name # Airline CoLA SST-2 CoNLL SciNER CrossNER
LogME HScore kNN LogME HScore kNN LogME HScore kNN LogME HScore kNN LogME HScore kNN LogME HScore kNN

allenai/scibert_scivocab_cased 12 -9 -10 -9 -3 -3 -5 -4 -4 -10 -2 -2 -2 -4 -4 -4 -1 -1 -4
bert-base-uncased 12 -3 -2 -3 -4 -4 -4 -3 -3 -10 -5 -5 -3 -5 -5 -2 -1 -1 -1
bert-large-uncased 24 -5 -4 -4 -8 -8 -8 -5 -5 -20 -9 -9 -8 -9 -8 -9 -8 -16 -6
cardiffnlp/twitter-roberta-base 12 -4 -4 -4 -3 -3 -2 -6 -6 -7 -4 -6 -2 -3 -3 -3 -8 -8 -2
distilbert-base-uncased 6 -2 -2 -2 -3 -3 -3 -2 -2 -2 -3 -3 -2 -2 -2 -1 -1 -1 -1
dmis-lab/biobert-base-cased-v1.2 12 -4 -9 -3 -4 -4 -5 -3 -3 -10 -4 -2 -2 -5 -5 -2 -2 -2 -2
emilyalsentzer/Bio_ClinicalBERT 12 -10 -10 -11 -4 -4 -5 -12 -12 -12 -5 -4 -5 -5 -5 -3 -2 -2 -2
google/electra-base-discriminator 12 -4 -3 -3 -1 -1 -1 -4 -4 -8 -6 -7 -4 -5 -5 -4 -7 -7 -4
google/electra-large-discriminator 24 -8 -8 -8 -1 -1 -1 -8 -8 -19 -15 -15 -6 -13 -13 -8 -8 -12 -9
google/electra-small-discriminator 12 -5 -5 -5 -1 -1 -1 -5 -5 -12 -8 -8 -1 -6 -6 -5 -6 -10 -1
microsoft/deberta-v3-base 12 -3 -3 -3 -1 -2 -1 -3 -3 -3 -7 -7 -5 -5 -5 -4 -7 -7 -5
microsoft/mdeberta-v3-base 12 -3 -3 -4 -1 -1 -1 -3 -3 -5 -5 -5 -5 -4 -4 -4 -5 -5 -4
microsoft/mpnet-base 12 -5 -5 -5 -4 -4 -1 -6 -6 -12 -3 -3 -6 -3 -2 -6 -1 -1 -6
roberta-base 12 -5 -5 -5 -3 -3 -1 -6 -6 -5 -4 -4 -4 -3 -8 -3 -8 -8 -3
sentence-transformers/all-MiniLM-L12-v2 12 -5 -5 -6 -7 -7 -8 -6 -6 -7 -6 -6 -6 -6 -6 -6 -6 -6 -6
sentence-transformers/all-mpnet-base-v2 12 -5 -5 -4 -6 -6 -6 -4 -4 -3 -8 -8 -7 -6 -6 -7 -8 -8 -7
SpanBERT/spanbert-base-cased 12 -5 -5 -6 -5 -5 -3 -6 -6 -11 -7 -4 -2 -7 -7 -7 -8 -8 -1
typeform/distilroberta-base-v2 6 -1 -1 -2 -2 -2 -1 -3 -3 -1 -2 -3 -2 -2 -2 -2 -1 -1 -1
xlm-roberta-base 12 -3 -3 -3 -4 -4 -3 -4 -4 -11 -4 -4 -3 -4 -4 -4 -2 -1 -4
xlm-roberta-large 24 -7 -7 -7 -6 -6 -3 -8 -8 -19 -10 -10 -7 -7 -7 -7 -10 -10 -8

Most transferable layer on average: -4.8 -4.95 -4.85 -3.55 -3.6 -3.15 -5.05 -5.05 -9.35 -5.85 -5.75 -4.1 -5.2 -5.35 -4.55 -5 -5.75 -3.85

Table 6: Indices of the best-performing layer of each LM evaluated on 6 datasets. The index i ∈ {−1, . . . ,−n}
refers to transformer encoder layer, where −1 is the last layerand −n is the bottom layer (i.e. the embedding layer).

Task Language Model LogMe Linear Linear Fine-tuned
last layer layer mean avg of scores best layer last layer layer mean

A
ir

lin
e

Se
nt

im
en

t

allenai/scibert_scivocab_cased −0.3106 −0.2916 −0.3001 −0.2958 78.72 ± 0.19 79.80 ± 0.36 83.36 ± 0.79
bert-base-uncased −0.2322 −0.2368 −0.2568 −0.2292 82.87 ± 0.20 82.84 ± 0.26 85.11 ± 0.44
bert-large-uncased −0.2205 −0.2203 −0.2519 −0.2176 84.07 ± 0.33 83.45 ± 0.16 86.32 ± 0.21
cardiffnlp/twitter-roberta-base −0.1855 −0.1800 −0.2057 −0.1759 84.90 ± 0.26 85.16 ± 0.18 85.70 ± 0.40
distilbert-base-uncased −0.2493 −0.2507 −0.2644 −0.2478 81.48 ± 0.23 81.44 ± 0.20 84.63 ± 0.22
dmis-lab/biobert-base-cased-v1.2 −0.2838 −0.2669 −0.2819 −0.2790 80.09 ± 0.11 81.63 ± 0.08 84.40 ± 0.32
emilyalsentzer/Bio_ClinicalBERT −0.3052 −0.2865 −0.2967 −0.2894 78.58 ± 0.20 80.08 ± 0.13 82.70 ± 0.30
google/electra-base-discriminator −0.2476 −0.2092 −0.2346 −0.1976 81.98 ± 0.35 84.11 ± 0.33 84.97 ± 0.93
google/electra-large-discriminator −0.2749 −0.1681 −0.2129 −0.1566 79.81 ± 0.24 85.63 ± 0.23 86.22 ± 0.15
google/electra-small-discriminator −0.3300 −0.2924 −0.3075 −0.2928 77.32 ± 0.23 79.89 ± 0.23 83.33 ± 0.17
microsoft/deberta-v3-base −0.1993 −0.1768 −0.2105 −0.1600 83.92 ± 0.06 85.54 ± 0.18 86.86 ± 0.28
microsoft/mdeberta-v3-base −0.2896 −0.2112 −0.2665 −0.2022 79.30 ± 0.07 83.67 ± 0.07 85.27 ± 0.05
microsoft/mpnet-base −0.2028 −0.1954 −0.2158 −0.1920 83.60 ± 0.11 84.06 ± 0.14 85.18 ± 0.28
roberta-base −0.2018 −0.1973 −0.2186 −0.1939 84.46 ± 0.21 84.59 ± 0.08 85.27 ± 0.24
sentence-transformers/all-MiniLM-L12-v2 −0.2614 −0.2179 −0.2432 −0.2150 83.21 ± 0.15 83.79 ± 0.18 84.74 ± 0.41
sentence-transformers/all-mpnet-base-v2 −0.2154 −0.1707 −0.2047 −0.1707 83.93 ± 0.17 84.49 ± 0.16 85.77 ± 0.46
SpanBERT/spanbert-base-cased −0.2699 −0.2463 −0.2628 −0.2473 80.26 ± 0.13 82.27 ± 0.12 83.88 ± 0.12
typeform/distilroberta-base-v2 −0.2201 −0.2251 −0.2364 −0.2201 83.59 ± 0.06 83.70 ± 0.17 84.34 ± 0.19
xlm-roberta-base −0.2128 −0.2158 −0.2409 −0.2067 82.64 ± 0.25 83.47 ± 0.10 84.79 ± 0.42
xlm-roberta-large −0.2125 −0.1912 −0.2301 −0.1791 83.08 ± 0.22 84.40 ± 0.23 86.27 ± 0.10

AVG SCORE −0.2463 −0.2225 −0.2471 −0.2184 81.89 83.2 84.96

Pearson corr. 0.7021 0.8765 0.7974 0.8820 0.6705 0.8711
Spearman’s rank corr. 0.6544 0.8484 0.7461 0.8530 0.6446 0.7890
Weighted Kendall’s tau 0.5340 0.6599 0.5566 0.6890 0.4852 0.6189

Table 7: Comparison between different layer aggregation methods on the Airline Sentiment dataset. Performance of
linear probing and fine-tuning is measured using micro-F1.

Task Language Model LogMe Linear Linear Fine-tuned
last layer layer mean avg of scores best layer last layer layer mean

C
oL

A

allenai/scibert_scivocab_cased −0.5995 −0.5978 −0.6107 −0.5925 17.22 ± 1.73 20.74 ± 1.43 38.88 ± 0.90
bert-base-uncased −0.5232 −0.5161 −0.5533 −0.4977 42.02 ± 0.49 40.83 ± 1.15 58.07 ± 0.25
bert-large-uncased −0.4956 −0.4695 −0.5400 −0.4492 46.59 ± 0.65 46.71 ± 0.34 62.01 ± 0.31
cardiffnlp/twitter-roberta-base −0.5056 −0.4939 −0.5319 −0.4916 38.03 ± 0.38 44.33 ± 0.63 60.37 ± 1.11
distilbert-base-uncased −0.5556 −0.5561 −0.5759 −0.5455 35.31 ± 0.94 34.24 ± 0.94 53.05 ± 1.56
dmis-lab/biobert-base-cased-v1.2 −0.5774 −0.5774 −0.5944 −0.5696 26.25 ± 0.23 25.40 ± 1.00 53.78 ± 0.56
emilyalsentzer/Bio_ClinicalBERT −0.6120 −0.6088 −0.6161 −0.6066 12.46 ± 0.95 14.42 ± 1.09 39.59 ± 0.76
google/electra-base-discriminator −0.3621 −0.4319 −0.5038 −0.3622 59.33 ± 0.89 50.32 ± 1.16 67.33 ± 0.37
google/electra-large-discriminator −0.3140 −0.3877 −0.4618 −0.3140 60.73 ± 0.17 54.88 ± 0.25 69.17 ± 0.08
google/electra-small-discriminator −0.4441 −0.5075 −0.5687 −0.4440 51.09 ± 0.35 36.59 ± 1.02 58.74 ± 0.92
microsoft/deberta-v3-base −0.3511 −0.3812 −0.4695 −0.3511 59.88 ± 0.22 56.67 ± 0.13 71.81 ± 0.72
microsoft/mdeberta-v3-base −0.4102 −0.4318 −0.5513 −0.4102 50.62 ± 0.91 43.50 ± 0.18 62.47 ± 0.98
microsoft/mpnet-base −0.5001 −0.4921 −0.5291 −0.4855 34.79 ± 1.16 37.23 ± 1.04 62.90 ± 0.48
roberta-base −0.4614 −0.4830 −0.5043 −0.4507 39.89 ± 0.49 41.40 ± 0.69 62.44 ± 0.09
sentence-transformers/all-MiniLM-L12-v2 −0.6564 −0.5852 −0.6024 −0.5708 12.33 ± 0.76 27.07 ± 0.41 47.89 ± 1.19
sentence-transformers/all-mpnet-base-v2 −0.6265 −0.5133 −0.5533 −0.5028 23.62 ± 1.02 41.34 ± 0.17 61.84 ± 0.36
SpanBERT/spanbert-base-cased −0.5462 −0.5315 −0.5615 −0.5277 27.92 ± 0.91 30.83 ± 0.82 57.17 ± 0.78
typeform/distilroberta-base-v2 −0.5100 −0.5275 −0.5463 −0.5034 33.14 ± 1.07 33.24 ± 1.73 58.05 ± 0.75
xlm-roberta-base −0.5688 −0.5695 −0.5908 −0.5549 16.55 ± 1.73 20.88 ± 2.28 54.14 ± 1.65
xlm-roberta-large −0.5309 −0.5230 −0.5648 −0.5105 22.49 ± 0.93 31.10 ± 1.05 61.97 ± 2.85

AVG SCORE −0.5075 −0.5092 −0.5515 −0.487 35.51 36.59 58.08

Pearson corr. 0.7804 0.9052 0.8916 0.8759 0.7924 0.8910
Spearman’s rank corr. 0.8451 0.9609 0.9139 0.9248 0.7684 0.8797
Weighted Kendall’s tau 0.7951 0.8920 0.8251 0.8210 0.7152 0.8249

Table 8: Comparison between different layer aggregation methods on the CoLA dataset. Performance of linear
probing and fine-tuning is measured using Matthews correlation coefficient (MCC).

Task Language Model LogMe Linear Linear Fine-tuned
last layer layer mean avg of scores best layer last layer layer mean

SS
T

2

allenai/scibert_scivocab_cased −0.5127 −0.4788 −0.5008 −0.4876 78.27 ± 0.40 79.83 ± 0.23 90.54 ± 0.06
bert-base-uncased −0.3258 −0.3287 −0.3751 −0.3074 86.64 ± 0.06 85.09 ± 0.11 92.58 ± 0.20
bert-large-uncased −0.2952 −0.2961 −0.3648 −0.2683 88.02 ± 0.05 87.22 ± 0.18 93.76 ± 0.16
cardiffnlp/twitter-roberta-base −0.3149 −0.2713 −0.3229 −0.2634 87.27 ± 0.46 89.22 ± 0.11 94.44 ± 0.06
distilbert-base-uncased −0.3311 −0.3527 −0.3820 −0.3269 84.00 ± 0.17 83.60 ± 0.12 91.43 ± 0.49
dmis-lab/biobert-base-cased-v1.2 −0.4354 −0.4223 −0.4542 −0.4274 80.45 ± 0.17 79.46 ± 0.25 91.40 ± 0.12
emilyalsentzer/Bio_ClinicalBERT −0.5220 −0.4855 −0.5088 −0.5002 76.20 ± 0.51 78.04 ± 0.05 90.42 ± 0.40
google/electra-base-discriminator −0.3118 −0.2364 −0.3057 −0.1902 89.05 ± 0.29 90.43 ± 0.17 95.20 ± 0.02
google/electra-large-discriminator −0.4591 −0.1948 −0.3274 −0.2366 84.00 ± 0.06 91.68 ± 0.05 96.62 ± 0.63
google/electra-small-discriminator −0.5443 −0.4368 −0.4729 −0.4356 78.38 ± 0.28 80.68 ± 0.06 91.53 ± 0.33
microsoft/deberta-v3-base −0.2190 −0.1978 −0.2641 −0.1598 90.25 ± 0.11 89.91 ± 0.11 95.98 ± 0.35
microsoft/mdeberta-v3-base −0.4192 −0.3522 −0.4288 −0.2754 83.49 ± 0.23 85.32 ± 0.46 93.52 ± 0.17
microsoft/mpnet-base −0.3354 −0.2655 −0.3192 −0.2684 86.69 ± 0.11 88.42 ± 0.23 94.72 ± 0.45
roberta-base −0.2985 −0.2570 −0.3086 −0.2470 87.61 ± 0.11 89.22 ± 0.22 94.83 ± 0.11
sentence-transformers/all-MiniLM-L12-v2 −0.4199 −0.3707 −0.4065 −0.3660 83.66 ± 0.06 84.34 ± 0.06 91.42 ± 0.21
sentence-transformers/all-mpnet-base-v2 −0.2562 −0.1966 −0.2746 −0.2039 89.39 ± 0.29 90.25 ± 0.23 94.47 ± 0.32
SpanBERT/spanbert-base-cased −0.3652 −0.3321 −0.3756 −0.3272 84.17 ± 0.34 87.04 ± 0.12 92.47 ± 0.15
typeform/distilroberta-base-v2 −0.3193 −0.3194 −0.3458 −0.3080 87.44 ± 0.17 87.56 ± 0.05 92.59 ± 0.05
xlm-roberta-base −0.4338 −0.4032 −0.4422 −0.3998 83.78 ± 0.05 84.12 ± 0.28 92.81 ± 0.07
xlm-roberta-large −0.3840 −0.3176 −0.3867 −0.2918 84.81 ± 0.18 86.93 ± 0.24 94.67 ± 0.17

AVG SCORE −0.3751 −0.3258 −0.3783 −0.3145 84.68 85.92 93.27

Pearson corr. 0.5846 0.9148 0.8295 0.8897 0.7447 0.9100
Spearman’s rank corr. 0.5789 0.9218 0.8241 0.9143 0.7424 0.9056
Weighted Kendall’s tau 0.3981 0.8523 0.6731 0.7856 0.5343 0.8268

Table 9: Comparison between different layer aggregation methods on the SST2 dataset. Performance of linear
probing and fine-tuning is measured using micro-F1.

Task Language Model LogMe Linear Linear Fine-tuned
last layer layer mean avg of scores best layer last layer layer mean

C
oN

L
L

03

allenai/scibert_scivocab_cased 0.4115 0.4166 0.3846 0.4241 67.00 ± 0.24 68.89 ± 0.05 87.58 ± 0.35
bert-base-uncased 0.6236 0.7024 0.6350 0.7070 82.43 ± 0.04 84.09 ± 0.18 91.39 ± 0.37
bert-large-uncased 0.5015 0.7126 0.6102 0.7334 71.83 ± 0.06 84.53 ± 0.22 92.12 ± 0.06
cardiffnlp/twitter-roberta-base 0.6211 0.7529 0.6782 0.7293 83.37 ± 0.10 85.56 ± 0.16 92.84 ± 0.08
distilbert-base-uncased 0.6849 0.7147 0.6643 0.7255 84.23 ± 0.33 82.70 ± 0.03 90.69 ± 0.19
dmis-lab/biobert-base-cased-v1.2 0.3855 0.4070 0.3780 0.4080 66.30 ± 0.08 67.90 ± 0.16 87.83 ± 0.19
emilyalsentzer/Bio_ClinicalBERT 0.3358 0.3619 0.3409 0.3544 59.53 ± 0.30 63.36 ± 0.16 85.23 ± 0.09
google/electra-base-discriminator 0.5853 0.7147 0.6426 0.7008 85.69 ± 0.22 86.12 ± 0.15 92.55 ± 0.09
google/electra-large-discriminator 0.5525 0.7773 0.6927 0.7705 83.37 ± 0.21 87.52 ± 0.10 94.02 ± 0.10
google/electra-small-discriminator 0.4542 0.5012 0.4690 0.4941 77.11 ± 0.06 75.95 ± 0.09 88.63 ± 0.36
microsoft/deberta-v3-base 0.5796 0.7794 0.7028 0.7757 84.93 ± 0.23 87.97 ± 0.05 93.86 ± 0.21
microsoft/mdeberta-v3-base 0.5091 0.6033 0.5332 0.6204 80.66 ± 0.10 81.80 ± 0.12 93.19 ± 0.06
microsoft/mpnet-base 0.6415 0.7446 0.6724 0.7210 84.37 ± 0.23 86.44 ± 0.08 92.88 ± 0.61
roberta-base 0.5960 0.7497 0.6744 0.7134 83.39 ± 0.06 86.91 ± 0.07 93.47 ± 0.09
sentence-transformers/all-MiniLM-L12-v2 0.2386 0.5777 0.5047 0.5735 69.16 ± 0.13 78.42 ± 0.22 90.57 ± 0.17
sentence-transformers/all-mpnet-base-v2 0.3797 0.7077 0.6155 0.6865 75.68 ± 0.19 84.85 ± 0.02 91.61 ± 0.25
SpanBERT/spanbert-base-cased 0.3637 0.4358 0.4008 0.4355 63.82 ± 0.07 70.58 ± 0.44 88.39 ± 0.50
typeform/distilroberta-base-v2 0.6577 0.7411 0.6881 0.7287 85.49 ± 0.16 86.15 ± 0.18 92.26 ± 0.02
xlm-roberta-base 0.6168 0.6899 0.6203 0.6924 80.86 ± 0.10 82.71 ± 0.17 92.50 ± 0.20
xlm-roberta-large 0.6203 0.7162 0.6425 0.7033 78.09 ± 0.26 82.58 ± 0.06 93.79 ± 0.06

AVG SCORE 0.5179 0.6403 0.5775 0.6349 77.37 80.75 91.27

Pearson corr. 0.6637 0.9258 0.9062 0.9250 0.8318 0.9415
Spearman’s rank corr. 0.5113 0.8620 0.8150 0.7383 0.6860 0.8075
Weighted Kendall’s tau 0.0910 0.7530 0.6849 0.6177 0.3840 0.7267

Table 10: Comparison between different layer aggregation methods on the CoNLL03 dataset. Performance of linear
probing and fine-tuning is measured using micro-F1.

Task Language Model LogMe Linear Linear Fine-tuned
last layer layer mean avg of scores best layer last layer layer mean

Sc
iN

E
R

(s
ci

en
ce

)

allenai/scibert_scivocab_cased 0.3621 0.3756 0.3563 0.3710 46.79 ± 0.06 47.34 ± 0.16 66.59 ± 0.26
bert-base-uncased 0.3338 0.3433 0.3271 0.3410 37.75 ± 0.37 39.22 ± 0.11 63.21 ± 0.52
bert-large-uncased 0.3140 0.3553 0.3289 0.3564 34.59 ± 0.21 41.81 ± 0.16 66.23 ± 0.57
cardiffnlp/twitter-roberta-base 0.3296 0.3444 0.3271 0.3394 37.09 ± 0.84 40.37 ± 0.43 65.83 ± 0.23
distilbert-base-uncased 0.3413 0.3416 0.3304 0.3437 41.16 ± 0.27 38.55 ± 0.09 61.68 ± 0.66
dmis-lab/biobert-base-cased-v1.2 0.3362 0.3550 0.3371 0.3543 40.81 ± 0.30 41.90 ± 0.07 64.22 ± 0.67
emilyalsentzer/Bio_ClinicalBERT 0.3141 0.3345 0.3158 0.3279 37.98 ± 0.48 39.84 ± 0.66 65.13 ± 0.34
google/electra-base-discriminator 0.3115 0.3513 0.3309 0.3511 40.62 ± 0.15 43.80 ± 0.35 65.82 ± 0.26
google/electra-large-discriminator 0.3054 0.3694 0.3461 0.3655 37.22 ± 0.21 44.32 ± 0.18 66.70 ± 0.28
google/electra-small-discriminator 0.2729 0.2882 0.2725 0.2841 31.17 ± 0.01 30.47 ± 0.49 61.04 ± 0.97
microsoft/deberta-v3-base 0.3081 0.3591 0.3375 0.3563 38.37 ± 0.01 44.70 ± 0.71 66.48 ± 0.86
microsoft/mdeberta-v3-base 0.2754 0.3157 0.2781 0.3101 30.27 ± 0.94 32.68 ± 0.44 65.67 ± 0.85
microsoft/mpnet-base 0.3417 0.3541 0.3363 0.3462 39.59 ± 0.03 43.26 ± 0.08 65.08 ± 0.25
roberta-base 0.3343 0.3519 0.3354 0.3453 37.99 ± 0.33 42.20 ± 0.05 66.31 ± 0.39
sentence-transformers/all-MiniLM-L12-v2 0.2263 0.3180 0.2926 0.3189 19.37 ± 0.14 33.49 ± 0.33 62.20 ± 0.71
sentence-transformers/all-mpnet-base-v2 0.2746 0.3566 0.3293 0.3507 22.71 ± 0.18 39.95 ± 0.45 65.32 ± 0.19
SpanBERT/spanbert-base-cased 0.2902 0.3416 0.3225 0.3402 28.68 ± 0.32 39.25 ± 0.25 63.76 ± 0.28
typeform/distilroberta-base-v2 0.3400 0.3477 0.3364 0.3488 38.26 ± 0.02 40.12 ± 0.03 64.49 ± 0.09
xlm-roberta-base 0.3302 0.3391 0.3191 0.3430 26.25 ± 1.11 36.65 ± 0.64 64.38 ± 1.00
xlm-roberta-large 0.3303 0.3483 0.3255 0.3454 29.70 ± 0.53 37.81 ± 0.57 65.15 ± 0.67

AVG SCORE 0.3136 0.3445 0.3242 0.342 34.82 39.89 64.76

Pearson corr. 0.3217 0.7036 0.5518 0.6365 0.3230 0.6976
Spearman’s rank corr. 0.0556 0.7048 0.5408 0.6150 0.2120 0.7263
Weighted Kendall’s tau 0.0599 0.6988 0.5987 0.6448 0.2031 0.7007

Table 11: Comparison between different layer aggregation methods on the SciNER (science) dataset. Performance
of linear probing and fine-tuning is measured using micro-F1.

Task Language Model LogMe Linear Linear Fine-tuned
last layer layer mean avg of scores best layer last layer layer mean

C
ro

ss
N

E
R

(s
ci

en
ce

)

allenai/scibert_scivocab_cased 0.8697 0.8732 0.8601 0.8697 35.97 ± 0.50 34.22 ± 0.65 63.91 ± 0.72
bert-base-uncased 0.9328 0.9342 0.9153 0.9328 40.83 ± 0.04 42.18 ± 0.23 67.15 ± 0.24
bert-large-uncased 0.8887 0.9517 0.9180 0.9446 27.03 ± 0.27 41.73 ± 0.15 71.49 ± 0.68
cardiffnlp/twitter-roberta-base 0.9141 0.9347 0.9147 0.9315 39.27 ± 0.41 43.76 ± 0.13 68.34 ± 1.96
distilbert-base-uncased 0.9533 0.9395 0.9273 0.9533 41.43 ± 0.33 40.20 ± 0.21 63.92 ± 0.02
dmis-lab/biobert-base-cased-v1.2 0.8667 0.8685 0.8538 0.8724 33.55 ± 0.02 32.35 ± 0.43 64.39 ± 1.00
emilyalsentzer/Bio_ClinicalBERT 0.8401 0.8431 0.8297 0.8415 27.50 ± 0.08 27.84 ± 0.28 57.12 ± 1.45
google/electra-base-discriminator 0.8561 0.9236 0.8987 0.9189 33.66 ± 0.10 41.66 ± 0.29 68.63 ± 0.82
google/electra-large-discriminator 0.8479 0.9737 0.9412 0.9804 29.34 ± 0.18 47.09 ± 0.07 69.56 ± 0.92
google/electra-small-discriminator 0.8034 0.8194 0.8093 0.8149 22.52 ± 0.21 29.31 ± 0.48 52.55 ± 0.80
microsoft/deberta-v3-base 0.8548 0.9516 0.9247 0.9772 36.43 ± 0.16 47.47 ± 0.18 70.91 ± 0.55
microsoft/mdeberta-v3-base 0.8254 0.8983 0.8687 0.9205 23.55 ± 0.38 30.64 ± 0.01 68.73 ± 1.01
microsoft/mpnet-base 0.9431 0.9479 0.9277 0.9431 23.79 ± 0.34 37.43 ± 0.05 66.55 ± 0.52
roberta-base 0.9269 0.9492 0.9304 0.9468 35.70 ± 0.76 44.89 ± 0.32 69.53 ± 0.39
sentence-transformers/all-MiniLM-L12-v2 0.7767 0.8550 0.8357 0.8628 17.04 ± 0.07 26.62 ± 0.33 62.57 ± 0.25
sentence-transformers/all-mpnet-base-v2 0.8486 0.9231 0.8957 0.9203 10.06 ± 0.64 31.14 ± 0.01 64.97 ± 0.99
SpanBERT/spanbert-base-cased 0.8338 0.8730 0.8534 0.8686 4.79 ± 0.28 26.30 ± 0.03 64.15 ± 1.34
typeform/distilroberta-base-v2 0.9453 0.9401 0.9295 0.9453 35.78 ± 0.21 41.32 ± 0.08 66.16 ± 0.19
xlm-roberta-base 0.9365 0.9227 0.9054 0.9373 13.96 ± 0.59 37.80 ± 0.23 66.47 ± 1.07
xlm-roberta-large 0.9325 0.9480 0.9231 0.9687 27.34 ± 0.19 40.60 ± 0.35 72.33 ± 0.55

AVG SCORE 0.8798 0.9135 0.8931 0.9175 27.98 37.23 65.97

Pearson corr. 0.4331 0.8466 0.7946 0.8587 0.2393 0.6998
Spearman’s rank corr. 0.2602 0.8256 0.6677 0.7534 0.1910 0.7474
Weighted Kendall’s tau 0.0135 0.6525 0.4533 0.5897 -0.0288 0.5492

Table 12: Comparison between different layer aggregation methods on the CrossNER (science) dataset. Performance
of linear probing and fine-tuning is measured using micro-F1.

	Introduction
	Related work
	Pre-trained Model Transferability Estimation
	Layer-wise Representation Analysis
	Automated Machine Learning

	Performance Estimation
	Estimators
	Layer-wise Feature Aggregation

	Experimental Setup
	Results and Discussion
	Analysis of Layer-wise Transferability

	Conclusion
	Hyperparameters for Fine-Tuning and Linear Probing
	Tested Language models
	Additional Results

