
ZAP: An Open-Source Multilingual Annotation Projection Framework

Alan Akbik and Roland Vollgraf
Zalando Research

Mühlenstraße 25, 10243 Berlin
{firstname.lastname}@zalando.de

Abstract
Previous work leveraged annotation projection as a convenient method to automatically generate linguistic resources such as treebanks
or propbanks for new languages. This approach automatically transfers linguistic annotation from a resource-rich source language (SL)
to translations in a target language (TL). However, to the best of our knowledge, no publicly available framework for this approach
currently exists, limiting researchers’ ability to reproduce and compare experiments. In this paper, we present ZAP, the first open-source
framework for annotation projection in parallel corpora. Our framework is Java-based and includes methods for preprocessing corpora,
computing word-alignments between sentence pairs, transferring different layers of linguistic annotation, and visualization. The
framework was designed for ease-of-use with lightweight APIs. We give an overview of ZAP and illustrate its usage.

The framework is available on github at https://github.com/zalandoresearch/zap

Keywords: Annotation projection, corpora, multilingual data

1. Introduction
Linguistically annotated corpora, such as treebanks (Mar-
cus et al., 1993) or propbanks (Palmer et al., 2005), are
a crucial driver of progress in natural language processing
research. As a cost-effective alternative to manual anno-
tation, previous work explored the use of annotation pro-
jection (Yarowsky et al., 2001) in parallel corpora to au-
tomatically create linguistically annotated corpora for new
languages. This approach requires only a parallel corpus
consisting of sentences in a resource-rich source language
(SL) and their translations in a target language (TL), as well
as existing parsers for the SL. It leverages the hypothesis
that translated sentences share a degree of syntactic and, in
particular, semantic parallelism (Padó and Lapata, 2009),
thus allowing us to automatically transfer linguistic annota-
tions from SL to TL. Refer to Figure 1 for an illustration of
this approach, and Section 2 for more details.
Annotation projection resources. Previous works lever-
aged annotation projection for various layers of syntactic
and semantic annotation (Yarowsky et al., 2001; Hwa et al.,
2005; Van der Plas et al., 2011; Akbik et al., 2015). How-
ever, to the best of our knowledge, no publicly available
framework exists for this approach. This limits the ability
of researchers to quickly set up experiments, discuss and
compare approaches against previous work, and analyze the
viability of annotation projection for a specific type of lin-
guistic annotation or language pair.
ZAP framework. For these reasons, we present ZAP,
the first open-source framework for annotation projection.
The framework contains a number of components callable
through lightweight APIs:

1. A set of preprocessing tools that wrap popular NLP
libraries to facilitate parsing of sentences in all sup-
ported languages.

2. An alignment module for word-aligning translated
sentence pairs in a parallel corpus.

3. An annotation projection module for transferring dif-
ferent types of linguistic annotation between word-
aligned sentences.

4. A visualization module for rendering word-aligned
sentence pairs and projected annotations, enabling re-
searchers to execute and visually inspect annotation
projection for specific sentence pairs.

In this extended abstract, we first give a brief overview of
annotation projection and related work. We then introduce
the ZAP framework and present a walkthrough of core API
calls and functionality. Finally, we discuss extensibility of
the framework and future work.

2. Annotation Projection
We first briefly illustrate the principle of annotation projec-
tion using the sentence pair in Figure 1. Here, the source
language is English and the target language is German. Our
goal is to automatically generate linguistic annotation for
the German sentence. In the first step (Figure 1.a), we
use syntactic and semantic parsers to predict part-of-speech
(PoS) tags, dependencies and semantic roles for the English
sentence. We also perform word alignment to link each En-
glish word to its German translation.
We then successively transfer linguistic annotation along
these word alignments to the German sentence. We begin
with word-level PoS tags (see Figure 1.b). For instance,
we transfer the NOUN tags from the English words cat
and cheese onto the German translations Katze and Käse,
thereby marking them up as nouns. We then also project
dependency arcs and labels, as well as semantic roles (see
Figure 1.c), thus learning that Katze (like the cat in the SL)
is a syntactic subject that takes the semantic role of CON-
SUMER in the target sentence. Thus, the German sentence
is automatically annotated with multiple layers of linguistic
annotation.
Previous work. Previous work used annotation projec-
tion for a wide range of annotations, including PoS tags

https://github.com/zalandoresearch/zap

The cat was eating cheese

MEAL

dobj

EAT.01

Die Katze aß gerade Käse

DET NOUN VERB NOUNVERB
CONSUMER

nsubj
det

aux

the cat cheeseate at-the-time

b) c)a)

The cat was eating cheese

MEAL

dobj

EAT.01

Die Katze aß gerade Käse

DET NOUN VERB NOUNVERB
CONSUMER

nsubj
det

aux

the cat cheeseate
DET NOUN NOUNVERB

at-the-time
?

The cat was eating cheese

MEAL

dobj

EAT.01

Die Katze aß gerade Käse

DET NOUN VERB NOUNVERB
CONSUMER

nsubj
det

aux

the cat cheeseate
DET NOUN NOUNVERB

det nsubj
dobj

at-the-time
?
? MEALEAT.01CONSUMER

Figure 1: Stepwise example of annotation projection for an English-German sentence pair. In a), SL parsers are used to
predict syntax and semantic roles for the English sentence, and words are aligned to their German translations. In b) PoS
tags are transferred along alignments onto German words. In c) dependency arcs and semantic roles are transferred along
word alignments, thus automatically labeling the German sentence with dependencies, PoS tags and semantic roles. Note
that the unaligned German word gerade remains unannotated.

(Yarowsky et al., 2001), syntactic chunks (Yarowsky and
Ngai, 2001), dependency trees (Hwa et al., 2005), word
senses (Bentivogli and Pianta, 2005), named entities (May-
hew et al., 2017) and semantic roles (Padó and Lapata,
2009; Akbik et al., 2015).
However, as the example in Figure 1 shows, annotation pro-
jection may not always produce fully annotated target lan-
guage sentences. Previous work found annotation projec-
tion to be sensitive to factors such as the quality of trans-
lations, accuracy of word alignments and parsers (Akbik
et al., 2015), and subject to errors stemming from transla-
tional divergences (Dorr, 1994). For these reasons, previ-
ous works devised a number of strategies to address such
issues. These include identifying and filtering subopti-
mally aligned sentence pairs from the parallel corpus (Ni
et al., 2017), blocking the projection of specific annota-
tions (Van der Plas et al., 2011), guiding projection using
cross-lingual statistics (Täckström et al., 2012), using semi-
supervised learning to fill annotation gaps in the target lan-
guage corpus (Akbik et al., 2015) and leveraging crowd-
sourcing to curate projections (Wang et al., 2017).
With the release of ZAP, we aim to assist researchers in-
vestigate and further improve such annotation projection
strategies for various layers of linguistic annotation, with
the hope of eventually generating new linguistic resources
for low-resource languages that approach the quality of ex-
pert annotation.

3. The ZAP Framework
The ZAP framework is a Java-based open source project
available on github1. It provides both a set of lightweight
APIs to programmatically design annotation projection ex-
periments, as well as a simple UI for exploratory analysis
of projection approaches. In the following, we illustrate the
core usage of the framework.

3.1. Packaging and Distribution
The project is managed using the maven build automation
tool, giving researchers two simple ways to start using the
framework. The first is to clone the github repository and

1https://github.com/zalandoresearch/zap

build the project locally by calling mvn install in its
root folder, which will execute unit tests and install the
project into the local maven repository. This is the rec-
ommended option for researchers interested in fully under-
standing and extending the APIs for their experiments. The
second option is to include the project as a dependency into
a Java project. This is accomplished simply by adding the
following dependency to the project’s POM.XML:

<dependency>
<groupId>org.zalando.research</groupId>
<artifactId>zap</artifactId>
<version>1.0</version>

</dependency>

We recommend the latter option for most researchers, al-
lowing them to quickly get started with building their own
projection experiments.

3.2. Parser Wrappers
The first component of ZAP are wrappers around popular
NLP tools, namely STANFORD CORENLP (Manning et al.,
2014) (for PoS-tagging, named entity recognition and de-
pendency parsing), the ANNA lemmatizers (Bohnet, 2010)
(for lemmatization) and the MATE toolkit (Björkelund et
al., 2009) (for semantic role labeling). These tools were
selected for their open source availability and their maven
packaging. This design choice ensures that users do not
need to install any third party parsers or tools to get started –
maven downloads all required dependencies automatically.
Parsing a sentence. After adding ZAP to a project, users
can parse any sentence with two lines of code:

PipelineWrapper pipeline = new
PipelineWrapper(Language.ENGLISH);

Sentence parse = pipeline.parse("The
cat was eating cheese.");

The first line initializes the parser wrapper for the selected
language, the second parses the sentence into an object that
contains the full syntactic-semantic parse of the sentence.

https://github.com/zalandoresearch/zap

This object provides methods for accessing annotations and
rendering itself in CoNLL-U2 format.
Different languages. In order to parse a sentence in a dif-
ferent language, the wrapper only needs to be initialized
with the appropriate language enum, as follows:

PipelineWrapper pipeline = new
PipelineWrapper(Language.GERMAN);

Sentence parse = pipeline.parse("Die
Katze aß gerade Käse.");

At time of writing, ZAP wraps tools for parsing of English,
German, French, Spanish and Chinese. We expect more
languages added to this list in the near future.
Gold-annotated corpora. It is also possible to create SEN-
TENCE objects from existing gold-annotated treebanks in
lieu of using parsers. For this purpose, we include classes
for reading corpora in CoNLL-U and CoNLL-X format.

3.3. Heuristic Word Alignment
A prerequisite for annotation projection is to word-align
parallel sentences. A first step is to create a BISENTENCE
object that contains a source sentence and its target lan-
guage translation. The source sentence is typically parsed
(as described above), while the target sentence is initialized
without annotation:

Sentence sourceSentence =
pipeline.parse("The cat was eating
cheese.");

Sentence targetSentence =
Sentence.fromTokenized("Die Katze
aß gerade Käse.");

BiSentence biSentence = new
BiSentence(sourceSentence,
targetSentence);

The ZAP framework offers several ways to add word align-
ments to a BISENTENCE object. One way is to read ex-
ternally computed word alignments in the “Pharaoh for-
mat”, as produced by most popular word-alignment tools
including FASTALIGN (Dyer et al., 2013) and BERKE-
LEYALIGNER (DeNero and Liang, 2007). As an alternative
option, ZAP also offers a heuristic word alignment mod-
ule that uses pre-computed word translation probabilities
computed over large parallel corpora (Tiedemann, 2012).
The latter option has the advantage of not requiring exter-
nal tools. It can be called by instantiating the HEURISTI-
CALIGNER.

HeuristicAligner aligner =
HeuristicAligner

.getInstance(Language.GERMAN);

biSentence.align(aligner);

2 http://universaldependencies.org/format.
html lists a specification of the format.

1 Die _ DET DT _ 2 det
2 Katze _ NOUN NN _ 3 nsubj
3 aß _ VERB VBG _ 0 root
4 gerade _ _ _ _ 0 _
5 Käse _ NOUN NN _ 3 dobj
6 . _ _ _ _ 0 _

Figure 2: German example sentence with projected annota-
tions rendered in CoNLL-U format (first 8 columns).

3.4. Annotation Projection
Once a word-aligned BISENTENCE is produced, a sim-
ple call of the ANNOTATIONTRANSFER object suffices to
project all word-level (PoS-tags), span-level (named en-
tities), tree-level (dependencies) and proposition semantic
levels of annotation from the source sentence onto the tar-
get sentence:

new AnnotationTransfer()
.transfer(biSentence);

In ZAP, annotation is projected following standard prac-
tices. Word-level annotation is projected using direct trans-
fer (Van der Plas et al., 2011), i.e. directly following word
alignments. Annotations that span several words, such as
semantic roles, are projected onto aligned target language
constituents that are identified following the procedure in-
troduced in Padó and Lapata (2009). Next to the above-
illustrated method call which transfers all linguistic anno-
tation, users may also choose only a subset of annotation
types to be projected. For instance, a user may only be in-
terested in projecting named entities, while using existing
target language parsers to identify syntactic structure.
Annotation projection produces a target language SEN-
TENCE object with added linguistic annotation. This ob-
ject can then be saved in CoNLL-U format, for instance for
verification or for use in training of target language parsers.
Refer to Figure 2 for an illustration.

3.5. Visualization
As discussed above, previous works found that the viability
of annotation projection depends both on the type of anno-
tation being projected as well as the specific language pair
in question. For this reason, previous work often conducted
careful qualitative analyses of error sources and defined
strategies to address these issues. To assist such analysis,
we previously presented a demonstration of a web-based
UI – called THE PROJECTOR (Akbik and Vollgraf, 2017) –
that visualizes sentence pairs, word alignments and various
layers of linguistic annotation. We include the visualization
capabilities of THE PROJECTOR into ZAP.
To launch the interactive UI, a simple method call suffices:

int port = 9000;
TheProjectorUI.instance()

.startServerAtPort(port);

This launches the web UI locally at the specified port. For
more information on the functionality of THE PROJECTOR,
refer to Akbik and Vollgraf (2017). A screenshot of the

http://universaldependencies.org/format.html
http://universaldependencies.org/format.html

Figure 3: ZAP’s visualization of the running example.

example sentence pair as rendered in the UI is illustrated in
Figure 3.

4. Summary and Outlook: Extending ZAP
To facilitate experimentation with different strategies, we
designed simple interfaces for ZAP that allow researchers
to extend the framework. It is our hope that the open source
nature of the project will encourage more research into
annotation projection, eventually leading to automatically
generated linguistic resources that approach the quality of
expert annotation. Our current work focuses on extending
the framework to support more languages and types of an-
notation, as well as adding heuristic methods for addressing
translational divergences.

Acknowledgements
We would like to thank the anonymous reviewers for their helpful
comments. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under
grant agreement no 732328 (“FashionBrain”).

5. Bibliographical References
Akbik, A. and Vollgraf, R. (2017). The projector: An

interactive annotation projection visualization tool. In
EMNLP 2017, Conference on Empirical Methods on
Natural Language Processing, pages 43–48.

Akbik, A., Chiticariu, L., Danilevsky, M., Li, Y.,
Vaithyanathan, S., and Zhu, H. (2015). Generating high
quality proposition banks for multilingual semantic role
labeling. In ACL 2015, 53rd Annual Meeting of the As-
sociation for Computational Linguistics, pages 397–407.

Bentivogli, L. and Pianta, E. (2005). Exploiting parallel
texts in the creation of multilingual semantically anno-
tated resources: the multisemcor corpus. Natural Lan-
guage Engineering, 11(3):247–261.

Björkelund, A., Hafdell, L., and Nugues, P. (2009). Mul-
tilingual semantic role labeling. In CoNLL 2009, 13th
Conference on Computational Natural Language Learn-
ing: Shared Task, pages 43–48.

Bohnet, B. (2010). Top accuracy and fast dependency
parsing is not a contradiction. In COLING 2010, 23rd
International Conference on Computational Linguistics,
pages 89–97.

DeNero, J. and Liang, P. (2007). The berke-
ley aligner. http://code.google.com/p/
berkeleyaligner/.

Dorr, B. J. (1994). Machine translation divergences: A for-
mal description and proposed solution. Computational
Linguistics, 20(4):597–633.

Dyer, C., Chahuneau, V., and Smith, N. A. (2013). A sim-
ple, fast, and effective reparameterization of ibm model
2. In NAACL 2013, North American Chapter of the As-
sociation for Computational Linguistics, pages 644–648.

Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., and Kolak,
O. (2005). Bootstrapping parsers via syntactic projec-
tion across parallel texts. Natural language engineering,
11(03):311–325.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard,
S., and McClosky, D. (2014). The stanford corenlp nat-
ural language processing toolkit. In ACL 2014, 52nd An-
nual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini,
B. (1993). Building a large annotated corpus of en-
glish: The penn treebank. Computational linguistics,
19(2):313–330.

Mayhew, S., Tsai, C.-T., and Roth, D. (2017). Cheap
translation for cross-lingual named entity recognition. In
EMNLP 2017, Conference on Empirical Methods in Nat-
ural Language Processing, pages 2526–2535.

Ni, J., Dinu, G., and Florian, R. (2017). Weakly su-
pervised cross-lingual named entity recognition via ef-
fective annotation and representation projection. CoRR,
abs/1707.02483.

Padó, S. and Lapata, M. (2009). Cross-lingual annotation
projection for semantic roles. Journal of Artificial Intel-
ligence Research, 36(1):307–340.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The
proposition bank: An annotated corpus of semantic roles.
Computational linguistics, 31(1):71–106.

Täckström, O., McDonald, R., and Uszkoreit, J. (2012).
Cross-lingual word clusters for direct transfer of linguis-
tic structure. In NAACL 2012, North American Chapter
of the Association for Computational Linguistics, pages
477–487.

Tiedemann, J. (2012). Parallel data, tools and interfaces in
opus. In LREC 2012, 8th International Conference on
Language Resources and Evaluation, pages 2214–2218.

Van der Plas, L., Merlo, P., and Henderson, J. (2011). Scal-
ing up automatic cross-lingual semantic role annotation.
In ACL 2011, 49th Annual Meeting of the Association for
Computational Linguistics, pages 299–304.

Wang, C., Akbik, A., Chiticariu, L., Li, Y., Xia, F., and
Xu, A. (2017). CROWD-IN-THE-LOOP: A hybrid ap-
proach for annotating semantic roles. In EMNLP 2017,
Conference on Empirical Methods in Natural Language
Processing, pages 1914–1923.

Yarowsky, D. and Ngai, G. (2001). Inducing multilin-
gual pos taggers and np bracketers via robust projection
across aligned corpora. In NAACL 2001, North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 1–8.

http://code.google.com/p/berkeleyaligner/
http://code.google.com/p/berkeleyaligner/

Yarowsky, D., Ngai, G., and Wicentowski, R. (2001). In-
ducing multilingual text analysis tools via robust projec-
tion across aligned corpora. In HLT 2001, 1st Interna-
tional Conference on Human Language Technology Re-
search, pages 1–8.

	Introduction
	Annotation Projection
	The ZAP Framework
	Packaging and Distribution
	Parser Wrappers
	Heuristic Word Alignment
	Annotation Projection
	Visualization

	Summary and Outlook: Extending ZAP
	Bibliographical References

